

Flight-Experiment Validation of the Dynamic Capabilities of a Flux-Pinned Interface as a Docking Mechanism

Frances Zhu*, Mitchell Dominguez, Mason Peck Cornell University

Laura Jones-Wilson

Jet Propulsion Laboratory, California Institute of Technology

IEEE Aerospace Conference 2019, Session 2.06

© 2019 California Institute of Technology. Government sponsorship acknowledged

Mars Sample Return Concept

Mars Sample Return Concept

Capture and Docking with Flux Pinning

To Take Away

• Flux Pinning Physics

• Microgravity Experiment

• Dynamic Metrics

• Dynamic Capabilities

Flux Pinning Basics

Experiment Configuration

Sensors

Metrics to Characterize Interface

Given a range of initial states and the sensor measurements:

- Capture success at various energetic states
- Contact force upon collision
- Interface stiffness
- Settling time

Microgravity Experiments

• An experiment from each capture scenario in which:

Outcome Matrix	Capture	Escape	
No Contact	Most Desirable	Less Desirable	
Contact	More Desirable	Least Desirable	

• Equilibrium experiment with near-zero initial motion

Success Across All Capture Experiments (N=27)

Success Across All Capture Experiments (N=27)

Equilibrium Experiment Energy Analysis

EQ Experiment Stiffness and Damping Analysis

$$\begin{bmatrix} \boldsymbol{r} \\ \boldsymbol{\theta} \\ \boldsymbol{v} \\ \boldsymbol{\omega} \end{bmatrix}_{k+1} = \begin{bmatrix} 1_3 & 0_3 \\ 0_3 & 1_3 \\ -\frac{K_{rr}\Delta t}{M} & \frac{-K_{r\theta}\Delta t}{I} \\ -\frac{K_{\theta r}\Delta t}{M} & -\frac{K_{\theta \theta}\Delta t}{I} \end{bmatrix}$$

$\Delta t 1_3$	0_3 7		
0_3	$\Delta t 1_3$	$_{\Gamma}r$	ı
$C_{rr}\Delta t$	0	$\begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{v} \end{bmatrix}$	
$I_3 - \overline{M}$	0_3		
0	$C_{\theta\theta}\Delta t$	$\lfloor \omega \rfloor$	k
0_3	$I_3 - \frac{1}{I}$		

(N-m)	K_{χ}	$K_{\mathcal{Y}}$	K_{Z}	K_{θ_x}	K_{θ_y}	K_{θ_z}
E[·]	554	262	108	1.57	0.92	0.88

(sec)	C_{x}	C_y	C_z	C_{θ_x}	C_{θ_y}	C_{θ_z}
2 %						
settling						
time	1.11	0.82	0.44	75	108	84

Capture and Docking with Flux Pinning

Flight-Experiment Validation of the Dynamic Capabilities of a Flux-Pinned Interface as a Docking Mechanism

Frances Zhu*, Mitchell Dominguez, Mason Peck Cornell University

Laura Jones-Wilson

Jet Propulsion Laboratory, California Institute of Technology

IEEE Aerospace Conference 2019, Session 2.06

© 2019 California Institute of Technology. Government sponsorship acknowledged